23 research outputs found

    Large-scale Multi-view Subspace Clustering in Linear Time

    Full text link
    A plethora of multi-view subspace clustering (MVSC) methods have been proposed over the past few years. Researchers manage to boost clustering accuracy from different points of view. However, many state-of-the-art MVSC algorithms, typically have a quadratic or even cubic complexity, are inefficient and inherently difficult to apply at large scales. In the era of big data, the computational issue becomes critical. To fill this gap, we propose a large-scale MVSC (LMVSC) algorithm with linear order complexity. Inspired by the idea of anchor graph, we first learn a smaller graph for each view. Then, a novel approach is designed to integrate those graphs so that we can implement spectral clustering on a smaller graph. Interestingly, it turns out that our model also applies to single-view scenario. Extensive experiments on various large-scale benchmark data sets validate the effectiveness and efficiency of our approach with respect to state-of-the-art clustering methods.Comment: Accepted by AAAI 202

    Classifying organisms and artefacts by their outline shapes

    Get PDF
    We often wish to classify objects by their shapes. Indeed, the study of shapes is an important part of many scientific fields, such as evolutionary biology, structural biology, image processing and archaeology. However, mathematical shape spaces are rather complicated and nonlinear. The most widely used methods of shape analysis, geometric morphometrics, treat the shapes as sets of points. Diffeomorphic methods consider the underlying curve rather than points, but have rarely been applied to real-world problems. Using a machine classifier, we tested the ability of several of these methods to describe and classify the shapes of a variety of organic and man-made objects. We find that one method, based on square-root velocity functions (SRVFs), outperforms all others, including a standard geometric morphometric method (eigenshapes), and that it is also superior to human experts using shape alone. When the SRVF approach is constrained to take account of homologous landmarks it can accurately classify objects of very different shapes. The SRVF method identifies a shortest path between shapes, and we show that this can be used to estimate the shapes of intermediate steps in evolutionary series. Diffeomorphic shape analysis methods, we conclude, now provide practical and effective solutions to many shape description and classification problems in the natural and human sciences.</p

    The complete chloroplast genome sequence of Athrotaxis cupressoides

    No full text
    Athrotaxis cupressoides (Cupressaceae) is a Tasmanian endemic conifer. It is mainly threatened by habitat fragmentation and limited distribution, yet little is known about its genomic background. In this study, the complete chloroplast (cp) genome of the species was assembled and annotated. The cp genome of A. cupressoides is a circular of 134,248 bp in size, where the inverted repeat regions (IRs) were lost. A total of 112 unique genes were annotated, including 78 proteins-coding genes, four rRNA genes, and 30 tRNA genes. The maximum likelihood (ML) phylogenetic tree indicates that the subfamily Athrotaxidoideae, to which A. cupressoides belongs, is sister to a clade including four subfamilies including Sequoioideae, Taxodioideae, Cupressoideae, and Callitroideae. The complete cp genome will be helpful to further studies on the conservation of this species and the evolutionary history of Cupressaceae

    Organic and inorganic carbon and their stable isotopes in surface sediments of the Yellow River Estuary

    No full text
    Studying the carbon dynamics of estuarine sediment is crucial to understanding of carbon cycle in the coastal ocean. This study is to evaluate the mechanisms regulating the dynamics of organic (TOC) and inorganic carbon (TIC) in surface sediment of the Yellow River Estuary (YRE). Based on data of 15 surface sediment cores, we found that TIC (6.3-20.1 g kg(-1)) was much higher than TOC (0.2-4.4 g kg(-1)). Both TOC and TIC were generally higher to the north than to the south, primarily due to the differences in kinetic energy level (i.e., higher to the south). Our analysis suggested that TOC was mainly from marine sources in the YER, except in the southern shallow bay where approximately 75% of TOC was terrigenous. The overall low levels of TOC were due to profound resuspension that could cause enhanced decomposition. On the other hand, high levels of TIC resulted partly from higher rates of biological production, and partly from decomposition of TOC associated with sediment resuspension. The isotopic signiture in TIC seems to imply that the latter is dominant in forming more TIC in the YRE, and there may be transfer of OC to IC in the water column

    Cardiolipin Regulates Mitochondrial Ultrastructure and Function in Mammalian Cells

    No full text
    Cardiolipin (CL) is a unique, tetra-acylated diphosphatidylglycerol lipid that mainly localizes in the inner mitochondria membrane (IMM) in mammalian cells and plays a central role in regulating mitochondrial architecture and functioning. A deficiency of CL biosynthesis and remodeling perturbs mitochondrial functioning and ultrastructure. Clinical and experimental studies on human patients and animal models have also provided compelling evidence that an abnormal CL content, acyl chain composition, localization, and level of oxidation may be directly linked to multiple diseases, including cardiomyopathy, neuronal dysfunction, immune cell defects, and metabolic disorders. The central role of CL in regulating the pathogenesis and progression of these diseases has attracted increasing attention in recent years. In this review, we focus on the advances in our understanding of the physiological roles of CL biosynthesis and remodeling from human patients and mouse models, and we provide an overview of the potential mechanism by which CL regulates the mitochondrial architecture and functioning

    Genetic Architecture of Maize Stalk Diameter and Rind Penetrometer Resistance in a Recombinant Inbred Line Population

    No full text
    Stalk lodging presents a major constraint on maize (Zea mays L.) quantity and quality and hampers mechanized grain harvesting. Stalk diameter (SD) and rind penetrometer resistance (RPR) are crucial indicators of stalk lodging. To dissect the genetic architecture of these indicators, we constructed a recombinant inbred line (RIL) population derived from a cross between maize inbred lines LDC-1 and YS501 to identify quantitative trait loci (QTLs) controlling SD and RPR. Corresponding phenotypes of basal second, third, and fourth internodes in four environments were determined. By integrating QTL mapping results based on individual environments and best linear unbiased prediction (BLUP) values, we identified 12, 12, and 13 QTLs associated with SD and 17, 14, and 17 associated with RPR. Each QTL accounted for 3.83–21.72% of phenotypic variation. For SD-related QTLs, 30 of 37 were enriched in 12 QTL clusters; similarly, RPR-related QTLs had 38 of 48 enriched in 12 QTL clusters. The stable QTL qSD9-2 for SD on chromosome 9 was validated and delimited within a physical region of 9.97 Mb. Confidence intervals of RPR-related QTLs contained 169 genes involved in lignin and polysaccharide biosynthesis, with 12 of these less than 500 kb from the peak of the corresponding QTL. Our results deepen our understanding of the genetic mechanism of maize stalk strength and provide a basis for breeding lodging resistance

    Microseepage of methane to the atmosphere from the Dawanqi oil-gas field, Tarim Basin, China

    No full text
    The microseepage of natural gas from subsurface hydrocarbon reservoirs is a widespread process in petroleum basins. On a global scale, microseepage represents an important natural source of atmospheric methane (CH4). To date, microseepage CH4 flux data have been obtained from ~20 petroleum systems in North America, Europe, and Asia. While the seasonal variations of gas flux due to soil methanotrophic activity are known, the role of geological factors in controlling gas fluxes has been poorly investigated. Here we present new microseepage data from the Dawanqi oil-gas field located within the Tarim Basin (China), a petroleum system characterized by intense faulting and shallow (<700 m) reservoirs. We measured CH4 fluxes from the ground at 51 sites along three transects by using a closed-chamber connected to a portable gas sensor using off-axis integrated cavity output spectroscopy. Our results indicate that the highest CH4 fluxes occur over faults and/or shallow reservoirs, especially those that were not developed and that have higher fluid pressures. Microseeping CH4 is thermogenic, like that occurring within the Dawanqi reservoirs, as demonstrated by 13C enrichment (δ13C from 46.3‰to 30.7‰) in the chamber. Mean and range microseepage values (17 mg m 2d 1; from 1.4 to 330 mg m 2d 1) are similar to those reported for other petroleum fields with active tectonics. Our results confirm that dry soil over petroleum fields can be a net source of atmospheric CH4 and its flux is primarily controlled by faulting, and reservoir depth and pressure. These factors shall be considered in global bottom-up seepage emission estimates.Published4353–43636A. Geochimica per l'ambienteJCR Journa

    A state-of-the-art review of biohydrogen producing from sewage sludge

    No full text
    The amount of sewage sludge has increased remarkably with the acceleration of urbanization and the promotion of municipal wastewater treatment. Hydrogen is a promising clean fuel, considering the emerging global energy crisis and the growing demand for environmental protection. Producing hydrogen from sewage sludge through anaerobic fermentation is an economical and environmentally sustainable technology. Therefore, in this work, the mechanism of hydrogen production from sludge is critically reviewed and clarified. Current researches including sludge pretreatment and key factors affecting hydrogen production were investigated as well. Some challenges still remain, such as almost all studies feature experiments in batch cultures, and the hydrogen yields were not large. Further studies are needed in this arena, such as inhibiting hydrogen-consuming bacteria, culturing, and screening high-efficiency bacteria. The mechanism of hydrogen production from anaerobic co-digestion, their factors, and techno-economic evaluation need be further studied as well

    Intracranial peak pressure as a predictor for perioperative mortality after spontaneous intracerebral hemorrhage evacuation and decompressive craniectomy

    No full text
    Abstract Background An optimal intracranial pressure (ICP) management target is not well defined in patients with spontaneous intracerebral hemorrhage. The aim of this study was to explore the association between perioperative ICP monitoring parameters and mortality of patients with spontaneous intracerebral hematoma undergoing emergency hematoma removal and decompressive craniectomy (DC), to provide evidence for a target-oriented ICP management. Methods The clinical and radiological features of 176 consecutive patients with spontaneous intracerebral hemorrhage that underwent emergent hematoma evacuation and DC were reviewed. The Glasgow Coma Scale (GCS) and Glasgow Outcome Scale (GOS) scores were assessed 2 weeks after surgery. Multivariate logistic regression analysis was performed to identify predictors for perioperative death. Results Forty-four cases (25.0%) were assigned to the ICP group. In patients with an ICP monitor, the median peak ICP value was 25.5 mmHg; 50% of them had a peak ICP value of more than 25 mmHg. The median duration of ICP > 25 mmHg was 2 days. Without a target-specific ICP management, the mortality at 2 weeks after surgery was similar between patients with or without an ICP monitor (27.3% versus 18.2%, p = 0.20). In multivariable analysis, the peak ICP value (OR 1.11, 95% CI 1.004–1.234, p = 0.04) was significantly associated with perioperative death in the ICP group. The area under ROC curve of peak ICP value was 0.78 (95%CI 0.62–0.94) for predicting mortality, with a cut-off value of 31 mmHg. Conclusion Compared with a persistent hyperintracranial pressure, a high ICP peak value might provide a better prediction for the mortality of patients with spontaneous intracerebral hemorrhage evacuation and DC, suggesting a tailored ICP management protocol to decrease ICP peak value
    corecore